

Effective: Fall 2024

COURSE INF	ORMATION					
Course Title:	Linear Algebra	r Algebra Course Number: MATH 232 Credits: 3				
Total Weeks:	14 (Fall, Spring) 12 (Summer)	Total Hours: 39	Course Level:	☐ First Year ☐ New ☐ Replacement	☑ Second Year☐ Revised CourseCourse	
Department:	Mathematics	Department Head: G. Belchev	Former Cours	se Code(s) and Nur	mber(s) (if applicable): N/A	
Pre-requisites (If there are no prerequisites, type NONE): MATH 101 or MATH 111 or equivalent						
Co-requisite Statement (List if applicable or type NONE): NONE						
Precluded Courses: N/A						

COURSE DESCRIPTION

This is a first course in linear algebra. Topics include matrix arithmetic and linear equations and determinants; real vector spaces and linear transformations; inner products and orthogonality; Eigenvalues and Eigenvectors.

LEARNING OUTCOMES

Upon successful completion of the course, students will be able to:

- 1. Linear systems
 - a. Solve linear systems using row reduction.
 - b. Find the rank of a matrix.
 - c. Answer questions regarding the existence and uniqueness of solutions of linear systems.
 - d. Understand how systems are used to solve problems in science, business and engineering.
 - e. Find the inverse of a matrix using row-reduction.
 - f. Express a system of equations as a vector equation and as a matrix equation and vice versa.
 - g. Solve a system with n equations and n unknowns using
 - i. Cramer' rule
 - ii. The inverse of the coefficient matrix

2. Matrices and matrix operations

- a. Understand the terms square matrix, symmetric matrix, zero matrix, diagonal matrix, triangular matrix and identity matrix.
- b. Perform the operations of addition, subtraction, scalar multiplication, multiplication, transpose and inverse of a matrix, and apply the properties of these operations to solve matrix equations.
- 3. The subspaces of R², R³ and Rⁿ
 - a. Geometric method of vector addition, subtraction, scalar multiplication.
 - b. Understand linear combinations and span of a set of vectors.
 - c. Describe the subspaces of R² and R³.
 - d. Find the vector equation and parametric equations of a line and a plane in \mathbb{R}^3 .
 - e. Solve problems involving linear combinations, linear dependence, linear independence, the span of a set of vectors, bases and dimension in \mathbb{R}^n .

- f. Find a basis and the dimension of the column space and the null space of a matrix.
- g. Understand the connection between bases and coordinate systems and find the coordinates of a vector relative to a given basis.

4. Inner product, length, distance, angle and orthogonality

- a. Apply the basic properties of the dot product and use the dot product to solve problems and define the norm of a vector, the angle between two vectors, the distance between two vectors and orthogonality in Rⁿ
- b. Find a linear equation for a plane in R³ using a point on the plane and normal vector to the plane.
- c. Calculate the orthogonal projection of one vector onto another in \mathbb{R}^n .
- d. Use orthogonal projection to find distance of a point from a line and from a plane in in R^3 .
- e. Explain the terms standard basis, orthogonal basis and orthonormal basis and be able to convert a basis into an orthonormal basis using the Gram-Schmidt Process (max of three vectors) in in \mathbb{R}^n .
- f. Find the orthogonal projection of a vector \mathbf{y} onto a given subspace S of \mathbb{R}^n and find the vector in S that is closest to \mathbf{y} .
- g. Determine the set of least-squares solutions of a given inconsistent linear system.

5. Linear transformations from R^n to in R^m

- a. Determine the matrices that describe rotation, shear, dilation or contraction and reflection in R^2 .
- b. Matrix transformations, domain, codomain, standard matrix, kernel, range, one-to-one, onto, linearity. Explain these terms in terms of rotation, reflection, etc.
- c. Determine whether a given transformation from R^n to in R^m is linear.
- d. Determine the standard matrix for a linear transformation from R^n to in R^m .
- e. Form composite of linear transformations.
- f. Determine the kernel, range, rank and nullity of a linear transformation.
- g. Determine if a linear transformation is one-to-one.
- h. Determine if a linear transformation is onto.
- i. Determine if a linear transformation is invertible, and if it is, find its inverse.

6. Determinants

- Calculate determinants using row operations, column operations, and expansion down any column and across any row.
- b. Solve a system using Cramer's Rule.
- c. Find the inverse of a matrix using the adjoint of the matrix.
- d. Find the volume of a parallelepiped.
- e. Prove and apply the basic properties of the determinant of a matrix.
- f. Prove and apply the basic properties of the cross product and use the cross product to calculate the area of a triangle and the volume of a parallelepiped.

7. Eigenvalues and eigenvectors

- a. Find the characteristic polynomial, eigenvalues and eigenspaces of a square matrix and determine whether the matrix is diagonalizable.
- b. Find the powers of a diagonalizable matrix.
- c. Solve problems in population dynamics.
- d. Solve linear systems of differential equations.

8. Proofs:

Be able to put together a mathematical argument in order to prove simple facts about vectors, matrices, determinants, dot products, length, projection, linear independence, subspaces and linear transormations.

INSTRUCTION AND GRADING

Instructional (Contact) Hours:

Туре	Duration
Lecture	39
Seminars/Tutorials	
Laboratory	
Field Experience	
Other (specify):	
T	otal 39

Grading Syste	m: Letter Grades	□ Percentage □	Pass/Fa	il 🗆	Satisfa	ctory/Uns	atisfactory [_ (Other \square
Specify passin	g grade: 50%								
Evaluation Activities and Weighting (total must equal 100%)									
		Lab Work:	%	Participatio Questions of lecture.		15% the	Project:		%
Quizzes	/Test: 20%	Midterm Exams: 30%		Final Exam:	35%		Other:	%	

TEXT(S) AND RESOURCE MATERIALS

Provide a full reference for each text and/or resource material and include whether required/not required.

Linear Algebra and its Applications, Latest edition, David C. Lay, Pearson Addison Wesley

COURSE TOPICS

List topics and sequence covered.

Week	Topic
Week 1	Matrices; Matrix Addition; Scalar Multiplications; Transpose, Linear Combinations; Matrix Equations; Applications. Row-Column Product and General Matrix Product; Matrix Vector Product and its Relation to Linear Combinations and Linear Systems; Properties of Matrix Multiplication.
Week 2	Matrix Multiplication Continued; Vectors in R2 and R3; Geometric Method of Vector Addition; Subtraction; Scalar Multiplication; Linear Combinations; Span. Subspaces of R2 and R3 Vector Equation and Parametric Equations of Lines and Planes.
Week 3	Inner Product, Length, Distance, Angle and Orthogonality; Scalar Equation of a Plane; Projection; Distance of a Point from a Line/Plane; Orthogonal and Orthonormal Sets of Vectors
Week 4	Matrix Transformations: Determine the Matrices that Describe

Rotation, Shear, Dilation or Contraction and Reflection in R2 Explain the Terms Domain, Codomain, Standard Matrix, Kernel, Range, One-to-One, Onto, Linearity in Terms of these transformations Standard Matrix for a Linear Transformation from Rn to in Rm.

Composite of Linear Transformations

Week 5 Transformations Continued

Week 6 Solving Linear Systems by Row-Reduction, Existence and Uniqueness

of Solutions; Rank of a Matrix.

Week 7 Applications of Systems: Polynomial Interpolation; Balancing

Chemical Equations; Leontieff's Exchange Model; Network Flow

Midterm Exam

Week 8 Applications of Systems: Find the Inverse of a Matrix; Solve

Problems involving Linear Combinations; Subspaces of Rn; Linear

Dependence / Independence; Kernel and Range of Linear Transformations; Conditions for being 1-1; onto; Invertible; Inverse of a Linear Transformation.

Week 9 Applications Continued; Basis and Dimension: Row Space; Column

Space and Null Space of a Matrix; Subspaces of Rn, Coordinates of a Vector

Relative to a Basis.

Week 10 Calculate Determinants using Cofactor Expansion; Row Operations

and Column Operations; Properties of Determinants

Week 11 Determinants Continued; Applications of Determinants: Cramer's

Rule, Adjoint Formula for Matrix Inverse, Area and Volume.

Week 12 Eigenvalues and Eigenspaces of a Square Matrix; Diagonalization of

a Square Matrix, Applications of Diagonalization.

Week 13 Gram-Schmidt Process for Finding an Orthonormal Basis for a

Subspace Coordinates Relative to an Orthogonal Basis; Determine the Set of Least-Squares Solutions of a Given Inconsistent Linear System

Week 14 FINAL EXAM

NOTES

- 1. Students are required to follow all College policies. Policies are available on the website at: Coquitlam College Policies
- 2. To find out how this course transfers, visit the BC Transfer Guide at: bctransferguide.ca

Last Revised: September 2024 Last Reviewed: September 2024