

COURSE OUTLINE

Last Revised: Fall 2020 Last Reviewed: January 2022

\mathbf{c}	IIDCE	INFO	DIVIV	TION
CO	OKSL	INFO	LIVIN	LICIA

Course Title: Business Calculus I Course Number: MATH 111 Credits: 3

Total Weeks: 14 (Fall, Spring) **Total Hours:** 39 **Course Level:** ⊠ First Year □ Second Year

☐ Replacement Course

Department: Math / Statistics Department Head: G. Belchev Former Course Code(s) and Number(s) (if applicable): N/A

Pre-requisites (If there are no prerequisites, type NONE): PREC 12 minimum "B" or MATH 100 or MATH 120

Co-requisite Statement (List if applicable or type NONE): NONE

Precluded Courses: N/A

COURSE DESCRIPTION

This is a first course in calculus intended primarily for students in business and the social sciences. Topics include limits, growth rates, differentiation and integration, logarithmic and exponential functions and their application to economics and optimization.

LEARNING OUTCOMES

Upon successful completion of the course, students will be able to:

- Understand the concept of limit and being able to compute basic limits
- Differentiate algebraic and transcendental functions
- Sketch curves using derivatives, symmetry, and asymptotes
- Apply the derivative to solve word problems involving approximations, related rates, optimization, etc.
- Find elementary anti-derivatives

INSTRUCTION AND GRADING

Instructional (Contact) Hours:

Туре		Duration
Lecture		39
Seminars/Tutorials		
Laboratory		
Field Experience		
Other (specify):		
	Total	39

COURSE OUTLINE

Grading System:	Letter Grades	□ Percentage □	□ Pass/Fa	il 🗆 Sa	tisfactory/Uns	atisfactory \Box	Other \square					
Specify passing grade: 50%												
Evaluation Activities and Weighting (total must equal 100%)												
	nts: % mber of, variety, e of assignments:	Lab Work:	%	Participation: Specify nature participation:	% of	Project: Specify nature	% of project:					
Quizzes/T	est: 25, 25 %	Midterm Exam: 25	5%	Final Exam: 25	%	Other:	%					

TEXT(S) AND RESOURCE MATERIALS

Provide a full reference for each text and/or resource material and include whether required/not required.

Lial, ML, et al. Calculus with Applications, Current edition, Pearson

COURSE TOPICS

List topics and sequence covered.

- Functions Review
 - Linear, quadratic, polynomial, rational, exponential, logarithmic and trigonometric functions with some applications.
- Differential Calculus

Limits, continuity, derivatives, rates of change, rules for calculating derivatives, derivatives of exponential, logarithmic and trigonometric functions, implicit differentiation, higher-order derivatives.

- Applications of Differential Calculus
 - Curve sketching, optimization (including business applications), elasticity of demand, linear approximations, Newton's Method
- Additional Topics

Anti-derivatives, exponential growth and decay, L'Hospital's Rule

NOTES

- 1. Students are required to follow all College policies. Policies are available on the website at: Coquitlam College Policies
- 2. To find out how this course transfers, visit the BC Transfer Guide at: bctransferguide.ca