

COURSE OUTLINE

Last Revised: January 2022 Last Reviewed: January 2022

COURSE INF	ORMATION			
Course Title:	Introduction to Chen	nistry with Laboratory	Course Number: CHEM 100	Credits: 4
Total Weeks:	14 (Fall, Spring) 12 (Summer)	Total Hours: 91	Course Level: ☑ First Year ☐ New ☐ Replacement	☐ Second Year ☐ Revised Course Course
Department:	Sciences	Department Head: S. Girdhar	Former Course Code(s) and Nu	imber(s) (if applicable): N/A
-	•	requisites, type NONE): PREC 12 or MA	ATH 100 or MATH 120 or equiva	lent. Students with credit for
Co-requisite S	Statement (List if app	licable or type NONE): NONE		
Precluded Co	urses: N/A			

COURSE DESCRIPTION

This course introduces the general concepts of chemistry, including atomic structure, stoichiometry, chemical bonding, liquids and solutions, kinetics, and equilibrium. This course includes a laboratory component. No prior knowledge of chemistry is required for this course.

LEARNING OUTCOMES

Upon successful completion of the course, students will be able to:

- Demonstrate a firm grasp of the knowledge of chemistry, as specified in course syllabus and objectives.
- Identify the relationships between chemistry and other science disciplines, and the applications of chemistry in society. Identify the impact of chemistry on our life and the world around us.
- Solve chemistry problems using mathematical and computational tools.
- Understand and use the correct vocabulary necessary to communicate specific chemical information to other chemists and non-chemists.
- Demonstrate competency in the laboratory skills: knowledge of the appropriate equipment and techniques, and follow the proper procedures and regulations for safe handling when using chemicals.
- Be able to understand the specific instructions given to carry out experiments, make observations and collect the necessary data with the appropriate precision and accuracy, then in a report process the data and determine and assess the results.
- Understand the bases of the electronic structure of atoms and its relationship to the periodic table of the elements.
- Be able to identify the types of molecular bonds and shapes of simple molecules.
- Understand the factors governing the kinetics of chemical reactions.
- Comprehend and test the equilibria of various systems, both homo- and heterogeneous, as related to gases, acids, and bases.
- Understand the fundamentals of oxidation-reduction reactions. Be able to recognize and balance a redox reaction.

INSTRUCTION AND GRADING

Instructional (Contact) Hours:

Туре	Duration
Lecture	52
Seminars/Tutorials	
Laboratory	39
Field Experience	
Other (specify):	
Total	91

Grading System: Let	tter Grades 🛛	Percentage	Pass/Fail 🗌	Satisfactory/Unsatisfactory	Other \square
----------------------------	---------------	------------	-------------	-----------------------------	-----------------

Specify passing grade: 50%

Evaluation Activities and Weighting (total must equal 100%)

Assignments:	9%	Lab Work:	20%	Participation:	8%	Project:	%
Specify number of, and nature of assign				Specify nature of participation:	f	Specify nati	ure of project:
3 problem set assign	nments			Weekly attendar classroom discus			
Quizzes/Test:	%	Midterm Exams:	32%	Final Exam:	31%	Other:	%
		Midterm 1	15%	Final	30%	Specify:	
		Midterm 2	15%	Practice Final	1%		
l		Practice Midterms	2%				

TEXT(S) AND RESOURCE MATERIALS

Provide a full reference for each text and/or resource material and include whether required/not required.

OpenStax College. (2021). Chemistry. https://openstax.org/details/books/chemistry-2e

COURSE TOPICS

List topics and sequence covered.

Week	Торіс	Chapter
Week 1	Scientific Method, Matter Measurements and Calculations	1
Week 2	Matter, molecules and ions	2
Week 3	Chemical nomenclature	2

COURSE OUTLINE

Week 4	Modern atomic theory	6
Week 5	Chemical Composition	1, 2, 6
Week 6	Chemical composition	3
Week 7	Chemical equations and types of reactions Midterm 1	4
Week 8	Reaction Stoichiometry and titrations	4
Week 9	Midterm 2	3, 4
Week 10	Energy and heat, calorimetry	5
Week 11	Phase transitions, heating/cooling curves	10
Week 12	Chemical bonding, Lewis structures	7
Week 13	Equilibrium	13
Week 14	FINAL EXAM	

NOTES

- 1. Students are required to follow all College policies. Policies are available on the website at: Coquitlam College Policies
- 2. To find out how this course transfers, visit the BC Transfer Guide at: bctransferguide.ca

Lab Experiments:

- 1. Intro to Lab Equipment/ The Thickness of a Thin Aluminum Sheet
- 2. Physical Separation of Matter/ Chemical Properties and Change
- 3. Types of Chemical Reactions
- 4. Moles of Iron and Copper
- 5. Calculations with a Chemical Reaction
- 6. Preparation of Standard Solutions and Use of a Spectrophotometer to Measure the Concentration of and Unknown Solution
- 7. Factors Affecting Reaction Rate
- 8. Investigating Chemical Equilibrium
- 9. Acid-Base Titration
- 10. Oxidation-Reduction Reactions