

Last Revised: November 2021

COURSE OUTLINE

Last Reviewed: January 2022

COURSE INFORMATION							
Course Title:	Discrete Mathematic	s II	Course Number:	MACM 201	Credits: 3		
Total Weeks:	14 (Fall, Spring) 12 (Summer)	Total Hours: 39	Course Level:	 First Year New Replacement (⊠ Second Year □ Revised Course Course		
Department:	Mathematics	Department Head: G. Belchev	Former Course C	ode(s) and Numb	er(s) (if applicable): N/A		

Pre-requisites (If there are no prerequisites, type NONE): MACM 101 with a minimum grade of "C"

Co-requisite Statement (List if applicable or type NONE): NONE

Precluded Courses: N/A

COURSE DESCRIPTION

A continuation of MACM 101. Topics covered include inclusion-exclusion, generating functions and recurrence relations, graphs and trees.

LEARNING OUTCOMES

Upon successful completion of the course, students will be able to:

Inclusion-Exclusion:

- Apply the inclusion-exclusion principle to problems with more than two sets.
- Use the principle of inclusion-exclusion to solve counting problems modeled after the problem of finding the number of integer solutions of a linear equation with constraints.
- Solve counting problems modeled after the number of onto functions from one finite set to another.
- Count the number of derangements of a set and solve counting problems based on this principle.
- Generating Functions:
- Derive generating functions for a sequence.
- Use ordinary and exponential generating functions to solve counting problems.

Recurrence Relations:

- Develop a recurrence relation to model a problem.
- Solve recurrence relations iteratively.
- Solve linear homogeneous recurrence relations with constant coefficients of second order.
- Verify solutions to linear nonhomogeneous recurrence relations.
- Use a generating function to solve a recurrence relation.
- Determine the big-O of divide-and-conquer recurrence algorithms such as the binary search.

Graphs:

- Represent a graph as an adjacency matrix or incidence matrix.
- Determine whether a pair of graphs is isomorphic.
- Demonstrate an understanding of connected, simple path, weighted graph, circuit, subgraph, complement, cut vertices, cut edges and degree of a vertex.
- Determine whether a graph has an Euler path or circuit.
- Determine whether a graph has a Hamiltonian path or cycle.

- Model and solve problems with a graph.
- Use Dijkstra's algorithm to find the shortest path between pairs of vertices in a weighted graph.
- Determine whether a graph is planar.
- Understand the chromatic polynomial of a graph.

Trees:

- Demonstrate an understanding of the terminology of rooted trees and m-ary trees.
- Form a binary search tree using a recursive algorithm and analyze the algorithm.
- Model a problem using a decision tree.
- Construct a binary tree which represents a given prefix coding scheme.
- Find the word represented by a bit string given a coding sequence.
- Demonstrate an understanding of a Huffman tree.
- Demonstrate an understanding of three algorithms for traversing all vertices of an ordered rooted tree (preorder, in-order and post-order traversal).
- Represent a complicated expression using a binary tree and write the expression in prefix, postfix or infix notation.
- Evaluate a prefix, postfix or infix expression.
- Demonstrate an understanding of several sorting algorithms and their complexity (bubble sort, merge sort, selection sort and quick sort).
- Find all the non-isomorphic spanning trees of a graph.
- Use a depth-first or breadth-first search to produce a spanning tree.
- Use Prim's or Kruskal's algorithm to construct a minimum spanning tree for a weighted graph

INSTRUCTION AND GRADING

Instructional (Contact) Hours:

Туре	Duration		
Lecture	39		
Seminars/Tutorials			
Laboratory			
Field Experience			
Other (s <i>pecify):</i>			
Total	39		

Grading System: Letter Grades ⊠ Percentage □ Pass/Fail □

Satisfactory/Unsatisfactory
Other
Other

Specify passing grade: 50%

COURSE TOPICS

Evaluation Activities and Weighting (total must equal 100%)

Assignments: Specify number of, var and nature of assignm		Lab Work:	%	Participation: Specify nature of participation:	%	Project: % Specify nature of project:	
Quizzes/Test:	%	2 Midterm Exams:	%50	Final Exam: 35%		Other: %	

TEXT(S) AND RESOURCE MATERIALS

Provide a full reference for each text and/or resource material and include whether required/not required.

Discrete Mathematics and Its Applications, (Latest edition), by Kenneth H. Rosen, McGraw-Hill. Discrete mathematics An Applied Introduction. (Latest edition), R. Grimaldi.

List topics and sequence covered.WeekCourseWeek 1Graph Theory Definitions Subgraphs, ComplementsWeek 2Graph Isomorphisms, Vertex Degree: Euler Trails and Circuits Planar GraphsWeek 3Hamilton Paths and Cycles Graph coloring (optional)Week 4Advanced Probability, Review of Finite Probability Conditional Probability, Discrete Random VariablesWeek 5Inclusion-Exclusion, The Principle of Inclusion-Exclusion

Week 6	Generalized Inclusion-Exclusion Derangements
Week 7	Advanced Enumeration Introduction to Generating Functions Calculational Techniques Partitions of Integers MID-TERM EXAM
Week 8	Recurrence Relations, First-Order Linear Recurrence Relations Second-Order Linear Homogeneous
Week 10	Recurrence Relations with Constant Coefficients, Nonhomogeneous Recurrence Relations The Method of Generating Functions
Week 11	Optimization and Matching, Review of Trees
Week 12	Dijkstra's Shortest-Path Algorithm Minimum Spanning Trees: Kruskal's Algorithm

Week 13Prim's Algorithms Matching Theory (optional)

Week 14 FINAL EXAM

NOTES

- 1. Students are required to follow all College policies. Policies are available on the website at: Coquitlam College Policies
- 2. To find out how this course transfers, visit the BC Transfer Guide at: <u>bctransferguide.ca</u>