COURSE OUTLINE

Last Revised: May 2014

COURSE INF	ORMATION							
Course Title:	Quantitative Method	ls I	Course Number:	STAT 290	Credits: 3			
Total Weeks:	14 (Fall, Spring)	Total Hours: 39	Course Level:	☐ First Year	⊠ Second Year			
	12 (Summer)			\square New	☐ Revised Course			
				☐ Replacement (Course			
Department:	Math / Statistics	Department Head: G. Belchev	Former Course C	ode(s) and Numbe	er(s) (if applicable): N/A			
Pre-requisites (If there are no prerequisites, type NONE): MATH 111 with MATH 112 recommended								
Co-requisite S	Statement (List if app	licable or type NONE): NONE						
Precluded Co	urses: N/A							

COURSE DESCRIPTION

This course provides students with an introduction to operations research. Linear programming models are used to formulate a variety of problems of optimal allocation of resources. Complex decision problems are analyzed via simulation and include an introduction to probability and statistics to deal with uncertainty.

LEARNING OUTCOMES

Upon successful completion of the course, students will be able to:

- Formulate a business problem into its mathematical model via LP (Linear Programming) Formulation.
- Solve LP by graphical method.
- Solve LP by Excel Spreadsheet.
- Formulate and solve a transportation (assignment) problem.
- Understand the project management (PERT/CPM).
- Understand the probability models Binomial Distribution, Poisson Distribution, Uniform Distribution, Normal Distribution, and Exponential Distribution.
- Understand the decision theory.

INSTRUCTION AND GRADING

Instructional (Contact) Hours:

Туре	Duration
Lecture	39
Seminars/Tutorials	
Laboratory	
Field Experience	
Other (s <i>pecify):</i>	
Tota	I 39

COURSE OUTLINE

Grading System:	Letter Grades ⊠	Percentage \square	Pass/Fail □	Satisfactory/Unsatisfactory \square	Other \square	
Specify passing grade: 50%						

Evaluation Activities and Weighting (total must equal 100%)

Assignments: Specify number of, and nature of assig	, ,	Lab Work:	%	Participation: Specify nature of participation:	%	Project: % Specify nature of project:
Quizzes/Test:	12.5%	Midterm Exam: 30%		Final Exam: 45%		Other: % Specify:

TEXT(S) AND RESOURCE MATERIALS

Provide a full reference for each text and/or resource material and include whether required/not required.

Commerce 290: Introduction to Quantitative Decision Making

Some selected chapters from Spreadsheet Modeling and Applications, Albright and Winston, Thompson Learning Inc, 2005; and Quantitative Methods for Business 9th edition, Anderson, Sweeney and Williams, Thompson 2004.

COURSE TOPICS

List topics and sequence covered.

Week	Topic	Chapter
Week 1	Introduction to modeling	1 – part 1
Week 2	LP Formulation	4 – part 1
Week 3	LP Formulation and graphical method	4 – part 1
Week 4	Solving LP problems with Excel Spreadsheet	3, 4 – part 1
Week 5	The art of Spreadsheet modeling	2, 3 – part 1
Week 6	Spreadsheet modeling and Transportation Problems	2, 5 – part 1
Week 7	Network models MIDTERM EXAM	5 – part 1
Week 8	Network models (PERT/CPM)	5 – part 1
Week 9	Introduction to Probability	2 – part 2
Week 10	Introduction to Probability; Probability Distributions	2, 3 – part 2
Week 11	Probability Distributions	3 – part 2
Week 12	Decision Analysis	4 – part 2
Week 13	Decision Analysis, and Simulation (if time permits)	4 – part 2

COURSE OUTLINE

Week 14 FINAL EXAM

NOTES

- 1. Students are required to follow all College policies. Policies are available on the website at: Coquitlam College Policies
- 2. To find out how this course transfers, visit the BC Transfer Guide at: bctransferguide.ca