

Last Revised: November 2020

COURSE INFORMATION

Course Title: Introduction to Computer Systems		Course Number: CSCI 250		Credits: 3
Total Weeks: 14 (Fall, Spring) 12 (Summer)	Total Hours:	Course Level:	 First Year New Replacement 	Second Year Revised Course t Course
Department: Computer Science Pre-requisites (If there are no pre	Department Head: M. O'Connor erequisites, type NONE): CSCI 150	Former Course Code(s) and Number(s) (if applicable): N/A		

Co-requisite Statement (List if applicable or type NONE): NONE

Precluded Courses: N/A

COURSE DESCRIPTION

This course focuses on computer systems and low-level programming. The major topics are the relationship between the computer architecture (the hardware) and the applications that run on it (the software), and the issues that influence the design of both. Programs will be written in both C and x86-64 assembly and may involve some GNU tools in the Linux environment. We will explore how instructions are encoded and executed and how binary data types are encoded and interpreted by computer hardware, and how these matters relate to the performance and reliability of applications.

LEARNING OUTCOMES

Upon successful completion of the course, students will be able to:

- Machine learning programs
- Representation of symbolic and numeric data
- Representation of instructions (instruction set architecture)
- Machine code optimization
- Basic digital systems
- CPU organization
- Memory organization
- Threads and synchronization (time permitting)

INSTRUCTION AND GRADING

Instructional (Contact) Hours:

Туре	Duration
Lecture	39
Seminars/Tutorials	
Laboratory	
Field Experience	
Other (s <i>pecify):</i>	
Tota	39

COURSE OUTLINE

Grading System: Letter Grades \boxtimes Percentage \square Pass/Fail \square

Satisfactory/Unsatisfactory $\ \square$

Other 🗌

Specify passing grade: 50%

Evaluation Activities and Weighting (total must equal 100%)

Assignments: Specify number of, va and nature of assignr		Lab Work: %	Participation: 5% Specify nature of participation:	Project: % Specify nature of project:
Quizzes/Test:	20%	Midterm Exam: 25%	Final Exam: 45%	Other: %

TEXT(S) AND RESOURCE MATERIALS

Provide a full reference for each text and/or resource material and include whether required/not required.

Computer Systems Mastering Engineering with Pearson eText -- Standalone Access Card

Computer Systems: A Programmer's Perspective, 3/E, Randal E. Bryant, David R. O'Halloran, Pearson, 2016, 9780134071923, Can be ordered directly online from Pearson or from the Bookstore

COURSE TOPICS

List topics and sequence covered.

Week 1	Introduction to the Computer Systems
Week 2	Representation and Manipulation Information
Week 3	Machine-Level Representation of Program
Week 4	Processor Architecture Quiz 1
Week 5	Optimizing Program Performance
Week 6	The Memory Hierarchy
Week 7	Midterm
Week 8	Linking
Week 9	Exceptional Control Flow
Week 10	Virtual Memory
Week 11	System Level IO
Week 12	Network Programming
Week 13	Concurrent Programming
Week 14	Final Exam

COURSE OUTLINE

NOTES

- 1. Students are required to follow all College policies. Policies are available on the website at: Coquitlam College Policies
- 2. To find out how this course transfers, visit the BC Transfer Guide at: <u>bctransferguide.ca</u>