COURSE OUTLINE

Last Revised: Fall 2015

COURSE INFO	DRMATION				
Course Title:	ntroduction to Proba	ability and Statistics	Course Number:	STAT 270	Credits: 3
	14 (Fall, Spring) 12 (Summer)	Total Hours: 39	Course Level:	☐ First Year☐ New☐ Replacement 0	☑ Second Year ☐ Revised Course Course
Department:	Math/Statistics	Department Head: G. Belchev	Former Course (Code(s) and Numb	er(s) (if applicable): N/A
Pre-requisites	(If there are no prer	requisites, type NONE): MATH 102	or MATH 112 (mi	nimum grade of B)	ı
Co-requisite St	tatement (List if app	licable or type NONE): NONE			
Precluded Courses: N/A					

COURSE DESCRIPTION

This course introduces students to probability theory and its applications to statistics, management science, reliability, quality control, insurance, computing science and other similar fields of endeavor.

LEARNING OUTCOMES

Upon successful completion of the course, students will be able to:

- Understand probability rules, conditional probability, and independence concept
- Apply the Bayes' theorem to solve management science and other engineering applications
- Name and describe various basic discrete probability distributions (Binomial, hypergeometric, and Poisson distributions) and their applications
- Name and describe various basic continuous probability distributions (uniform, exponential, gamma, and normal distributions) and their applications
- Understand and apply the central limit theorem
- Construct confidence intervals and interpret outcomes
- Perform hypothesis testing and interpret p-value
- Develop and healthy attitude about statistics and the confidence to explore the statistical ideas beyond this course

INSTRUCTION AND GRADING

Instructional (Contact) Hours:

Туре	Duration
Lecture	39
Seminars/Tutorials	
Laboratory	
Field Experience	
Other (s <i>pecify):</i>	
Total	39

Grading System:	Letter Grades ⊠	Percentage \square	Pass/Fail 🗌	Satisfactory/Unsatisfactory \square	Other \square

Specify passing grade: 50%

Evaluation Activities and Weighting (total must equal 100%)

Assignments: Specify number of, v and nature of assign	-	Lab Work: %	3	Participation: Specify nature of participation:	7.5%	Project: Specify nature o	% of project:
Quizzes/Test:	7.5%	Midterm Exams (2): 40%		Final Exam: 45%		Other: Specify:	%

TEXT(S) AND RESOURCE MATERIALS

Provide a full reference for each text and/or resource material and include whether required/not required.

Probability and Statistics for Engineering and the Sciences, 7th ed., by J. Devore, Duxbury Publishers.

COURSE TOPICS

List topics and sequence covered.

Week	Topic
Week 1	Overview and descriptive statistics
Week 2	Probability: Elementary probability rules
Week 3	Probability: Conditional probability and interdependence Bayes' theorem
Week 4	Discrete random variables and probability distributions: Expectation, variance, and CDF
Week 5	Discrete random variables and probability distributions: Binomial, hyper-geometric, and Poisson distributions
Week 6	Continuous random variables and probability distributions: Expectation, variance, and CDF
Week 7	MIDTERM EXAM
Week 8	Continuous random variables and probability distributions: Continuous distributions, uniform, exponential, gamma, and normal distributions, normal approximation to the binomial distribution
Week 9	Joint probability distributions and random samples: Discrete, bivariate distributions, joint, marginal, and conditional distributions, covariance, and independence
Week 9 Week 10	• • • • • • • • • • • • • • • • • • • •
	conditional distributions, covariance, and independence Joint probability distributions and random samples: Sums of random variables, law of large number, the

COURSE OUTLINE

Week 14 FINAL EXAM

NOTES

- 1. Students are required to follow all College policies. Policies are available on the website at: Coquitlam College Policies
- 2. To find out how this course transfers, visit the BC Transfer Guide at: bctransferguide.ca