COURSE OUTLINE

Last Revised: July 2015

COURSE INFO	ORMATION				
Course Title:	Introduction to Comp	outer Programming using C++	Course Number:	CSCI 101	Credits: 4
Total Weeks:	14 (Fall, Spring) 12 (Summer)	Total Hours: 71.5	Course Level:	☑ First Year☐ New☐ Replacement 0	☐ Second Year ☐ Revised Course Course
Department:	Computer Science	Department Head: M. O'Connor	Former Course (Code(s) and Numb	er(s) (if applicable): N/A
Pre-requisites	(If there are no prer	equisites, type NONE): PREC 12 or	MATH 100 or MA	TH 120	
Co-requisite S	tatement (List if app	licable or type NONE): NONE			
Precluded Co	urses: N/A				

COURSE DESCRIPTION

This course is an introduction to computer programming using the C++ programming language. Students will be introduced to the principles of problem solving and algorithm design with emphasis on object-oriented programming. By the end of the course, students will be able to design, develop, test and document well-structured programs.

LEARNING OUTCOMES

Upon successful completion of the course, students will be able to:

- Cite some historical facts of computer science.
- Describe fundamental concepts behind computer science.
- · Analyze problem specifications.
- Define algorithms to solve reasonably challenging problems.
- Construct C++ programs using object-oriented programming techniques.
- Trace the execution of C++ programs.
- Describe the basic techniques of the program design in general and object-oriented programming.
- Write C++ programs using object-oriented programming techniques.
- Describe different data types used in C++, declare, and define variables and constants.
- Use C++ decision structures and repetitive structures.
- Describe and demonstrate simple enumeration in a program.
- Describe the concept of a class, class constructor and object of a class.
- Demonstrate a C++ class, its methods (static, non-static, and overloaded) and describe how to create objects.
- Describe polymorphism and inheritance in general.
- Use pointers and dynamic memory management.
- Describe the notion of exception handling.
- Use exception handling.
- Describe the concept of I/O stream and demonstrate data read and write operations in a C++ program.

COURSE OUTLINE

- Use elementary data structures such as arrays and lists.
- Implement fundamental algorithms such as the linear search and selection sort.
- Implement a recursive algorithm.
- Document a project.

INSTRUCTION AND GRADING

Instructional (Contact) Hours:

Туре	Duration
Lecture	52
Seminars/Tutorials	
Laboratory	19.5
Field Experience	
Other (specify):	
Tot	tal 71.5

Grading System:	Letter Grades 🗵	Percentage \square	Pass/Fail 🗌	Satisfactory	//Unsatisfactory	/ 🗆	Other \square
-----------------	-----------------	----------------------	-------------	--------------	------------------	-----	-----------------

Specify passing grade: 50%

Evaluation Activities and Weighting (total must equal 100%)

Assignments: Specify number of, v and nature of assign	-	Lab Work:	5%	Participation: Specify nature of participation:	5%	Project: % Specify nature of project:
Quizzes/Test:	10%	Midterm Exam: 30%		Final Exam: 40%		Other: % Specify:

TEXT(S) AND RESOURCE MATERIALS

Provide a full reference for each text and/or resource material and include whether required/not required.

Problem Solving with C++. 9th Edition, Walter Savitch. Pearson, 2015 ISBN-10: 0133591743. ISBN-13:9780133591743.

COURSE TOPICS

List topics and sequence covered.

Week	Topic	Chapter 1
Week 1	Introduction to Computers, C++, and Computation	1-2
Week 2	Basic Computation	2
Week 3	Flow of control: branching and loops	3

COURSE OUTLINE

Week 4	Abstraction and Functions	4
Week 5	Abstraction and Functions	5
Week 6	Streams	6
Week 7	Streams MIDTERM EXAM	6
Week 8	Objects and Classes	6
Week 9	Arrays	7
Week 10	Strings	8
Week 11	Pointers and Dynamic Arrays	9
Week 12	Defining Classes	10
Week 13	Dynamic data structures and Recursion	13-14
Week 14	FINAL EXAM	

NOTES

- 1. Students are required to follow all College policies. Policies are available on the website at: Coquitlam College Policies